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Hierarchical Mean Field Games for
Multiagent Systems With Tracking-Type Costs:

Distributed -Stackelberg Equilibria
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Abstract—In this technical note, hierarchical games are investigated for
multi-agent systems involving a leader and a large number of followerswith
infinite horizon tracking-type costs. By jointly analyzing dynamic equa-
tions and index functions of all agents, a set of centralized Stackelberg equi-
librium strategies is given. Then, by using the mean field approach and the
brute force method, a set of distributed strategies is designed. Under mild
conditions, it is shown that the closed-loop system is uniformly stable and
the set of distributed strategies is an -Stackelberg equilibrium.

Index Terms—Distributed strategy, mean field approach, multi-agent
system, Stackelberg equilibrium, tracking control.

I. INTRODUCTION

In recent years, much attention has been drawn to the game-theoretic
framework for control and optimization of multi-agent systems
(MASs). Under this framework, each rational agent needs to consider
all possible interactions to make its decisions, which results in a
great challenge on computational complexity of designing distributed
strategies, particularly for large population systems. To reduce the
complexity, mean field (MF) approaches were applied to the kind of
problems and some asymptotic equilibrium solutions were obtained
and studied [1]–[10].
For MF games of MASs, most previous works considered the case

where agents are with equal roles. Recently, there have been some re-
sults on the case that agents are with different influences. Huang [11]
investigated continuous-time stochastic dynamic games for large-pop-
ulation systems with a major player, and provided -Nash equilibria
for the systems under some consistency conditions. This work was ex-
tended to mixed games with continuum-parameterized minor players
[12] and nonlinear major-minor MF systems [13], respectively. Wang
and Zhang [14] considered the discrete-time case with a major agent
and random parameters, and gave a set of -Nash strategies in an ex-
plicit form. Benkard et al. [15] studied oblivious equilibria with dom-
inant firms in industry models.
All the above-mentioned papers assumed that no agents can enforce

their strategies on others or have priority to move first. However, this
does not fit into some practical situations. For example, in amarket with
a monopoly investor and many private investors, due to complexity and
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volatility of markets private investors may not dare to act rashly and
often make decisions at the heels of the monopoly investor. Another
example is in a game for the central government and local governments
the higher authority holds the dominant position and first announces a
policy, and then the localities attempt to seek their rational countermea-
sures to the top-down policy. A well-known mathematical description
for the above models is the hierarchical (Stackelberg) game [19]. In
this game, the leaders are in a dominant place and able to impose their
strategies on followers in subordinate places. Generally speaking, the
leaders first announce the decisions, and then the followers give their
response strategies. For hierarchical games with a leader and many
followers, readers are referred to [16]–[20]. Kydland [17], [18] dis-
cussed three types of equilibrium solutions, and gave the computation
details of feedback solutions for finite horizon dominant-player games.
However, the above works mainly considered the case of centralized
strategies, and there are few results on distributed strategies. [21] in-
vestigated the hierarchical control of Markov chains, and provided a
near-optimal algorithm for open-loop distributed strategies.
In this technical note, hierarchical games are investigated for MASs

involving a major agent and many minor agents with infinite horizon
tracking-type costs. In each stage of the game, the major agent has
priority to first announce its decision, and then all the minor agents
give strategies simultaneously. Compared with the previous works, the
model in this note is characterized by the following features: (a) In ac-
cordance with the role difference, agents are divided into a leader and
many followers; there is a two-level hierarchy. The leader dominates in
the game and can enforce its strategy on followers. (b) Different from
the previous works [14], [22], the initial values of agents’ states are ar-
bitrary square-integrable random variables, without assuming that their
expectations are equal. Instead of tracking with one-step lag, the objec-
tive of each agent is to track the state average of all minor agents in real
time, which is more difficult to tackle. In this note, we first provide a set
of centralized Stackelberg equilibrium strategies by jointly analyzing
the dynamic equations and index functions of all agents. Then, based
on the MF approach and the BF method, we obtain a fixed-point equa-
tion satisfied by the MF aggregate quantity, from which a set of dis-
tributed strategies is given. Under mild conditions, we show that the
closed-loop system is uniformly stable and the set of distributed strate-
gies is an -Stackelberg equilibrium.
The technical note is organized as follows. In Section II, we de-

scribe the model and basic assumptions. In Section III, we provide a
set of centralized Stackelberg equilibrium strategies. In Section IV, we
first design a set of distributed strategies by the MF theory and the BF
method, and then analyze the stability of the closed-loop system and
the optimality of the distributed strategies. In Section V, through a nu-
merical example, we verify asymptotical optimality of the distributed
strategies. In Section VI, we conclude the note.

Notation

denotes an -dimensional identity matrix; denotes the -di-
mensional column vector whose elements are 1; denotes the column
vector whose elements are 0 except that the th element is de-
notes the Euclidean vector norm (or inducedmatrix norm); denotes
the spectral radius. denotes the Kronecker product. For a given set
collection , denotes the algebra generated by . For a family
of -values random variables , denotes
the algebra , where is an dimen-
sional Borel algebra.
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II. PROBLEM DESCRIPTION

Consider the MAS described by the following dynamics:

(1)

(2)

where and , are the state,
input and stochastic disturbance of the agent , respectively. denotes
the state of the major agent, and , denotes the state of
the th minor agent. is state average of all
minor agents. , are Borel measurable
functions.
The cost functions of agents are described by

(3)

(4)

where , , and
. Here,

, and .
Remark 1: Model (1)–(4) is not only closely related with the adap-

tive tracking control [23], [24], but also has wide application back-
grounds. For example, consider a stock market with a monopoly in-
vestor and many private investors. denotes the earnings of the mo-
nopoly investor, and denotes the earnings of the th private investor.
For this model, the previous works [14], [22] mainly considered the
case where the earnings of each investor attain some function of the av-
erage earnings of the market at the preceding instant, i.e., the tracking
model with one-step lag. Instead, here each investor anticipates its earn-
ings get to some function of the average earnings of the market in
real time, which fits into the practical background better. However, to
achieve real-time tracking, each investor not only needs to estimate the
average earnings of the market, but also should consider all possible
actions of all the investors in the next step. Thus, it is more difficult to
analyze (1)–(4).
For convenience of reference, we list the main assumptions:
A1): is a family of independent -di-

mensional white noise sequences on a probability space ,
, where if

, ; otherwise, .
A2): Initial states are independent random vari-

ables. .
A3): . is

stable, i.e., all its eigenvalues lie inside the unit circle.
Throughout the technical note, assume that the state and parameters

of each agent are known to itself. Parameters in costs of minor agents
are available to the major agent. The real-time state and strategy of the
major agent can be observed by all the minor agents. In each stage of
the game, the major agent first announces decisions, and then minor
agents give their strategies simultaneously and noncooperatively. Thus,
this game is a sequential game, and every information set of followers
contains only one element.
Remark 2: The above assumptions have wide practical back-

grounds. For instance, consider a market consisting of a monopoly
investor and many private investors. Due to complexity and volatility
of markets, private investors may not dare to act rashly, and they often
make decisions at the heels of the monopoly investor. Meanwhile,
with a high degree of market transparency, actions of the monopoly
investor could be available to private investors.

First, we provide two groups of strategy sets:

is called the centralized strategy set, which corresponds to the in-
formation structure
. is called the distributed strategy set, which corresponds to the

information structure . The main
objective of this technical note is to seek centralized and distributed
Stackelberg strategies for the game above.
Remark 3: Distributed games of MAS with a major agent were in-

vestigated in [11]–[14], while no leaders or followers are involved in
their games and all agents give strategies simultaneously. However, in
the game (1)–(4) the major agent as a leader is dominant and has pri-
ority to announce a decision in advance, and the minor agent cannot
take any actions before getting the leader’s instruction. Thus, an essen-
tial difference arises from the proactiveness of the leader between the
game (1)–(4) and the models in [11]–[14].

III. CENTRALIZED STRATEGIES

In this section, we give centralized Stackelberg equilibrium strate-
gies (i.e., each agent can obtain the states and parameters of all the
agents, which is an ideal case). This result contributes to design and
analyze distributed strategies.

A. The Case of Equal Roles

Consider the following game problem, named (P1), for convenience
of reference. The dynamic equations of agents are

and the index functions of Agent , is

We first provide the following result of optimality.
Theorem 3.1: For Problem (P1), ifA1)-A2) hold, and for any ,

is invertible then under any set of strategies
, it follows that for any

and the equality holds if and only if

(5)

Proof: Let

From A1), A2) and independence of
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(6)

This implies that the equality holds for given by (5).
Remark 4: By Theorem 3.1, we can obtain that (5) is a unique

(strong) Nash equilibrium [25], [26]. Thus, (5) is the unique optimal
(rational) response of (P1).

B. Stackelberg Equilibrium Solutions

We now seek a centralized Stackelberg equilibrium for the system
(1)–(4) by the brute force (BF) method [19]. Kydland [18] provided a
derivation for finite-horizon Stackelberg games. In contrast, here we
need to tackle the infinite-horizon game with time-varying tracking-
type costs.
Suppose the major agent first provides the strategy .

Then the optimization problem faced by each minor agent is to mini-
mize over , where

(7)

Here, By
Theorem 3.1, the optimal response of Agent is

(8)

Applying (8) into (2) yields the closed-loop equation

(9)

From this and (4), the optimization for Agent 0 is to minimize
over , where

and . By (1), (9) and A1),

and the equality holds when

(10)

This implies

(11)

where .
From the above analysis, we get the following theorem.
Theorem 3.2: If A1)-A3) hold, and for any , and

are invertible, then there exists a centralized
Stackelberg equilibrium solution for (1)–(4), which is given by (8) and
(11). The corresponding index values are

(12)

(13)

Proof: We only need to prove that
and are invertible. Notice

. From the invertibility of
, are invertible. Furthermore,

. By
direct computation, ,
which implies that is invertible.

IV. DISTRIBUTED STRATEGIES

A. Design of Strategies

We now design distributed strategies for the system (1)–(4) by using
the MF approach and the BF method. The key idea of MF approaches
is to replace the overall effect of all agents to a single agent by the
aggregate effect [2], [9].
First, we construct the auxiliary system described by

(14)

(15)
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with the index functions

(16)

(17)

In (14)–(17), is called the aggregate effect function of all
the minor agents, which can be obtained by each agent by solving a
fixed-point equation.
Suppose Agent 0 first announces . Then the

optimization problem faced by all the minor agents is to mini-
mize over , where

, and

(18)

By Assumption A1) and (15)

This gives the optimal response strategies of minor agents

(19)

Applying (19) into (15), we get the closed-loop equation

(20)

which implies

Note that from the law of large numbers, it follows that:

and is replaced by when constructing the auxiliary system
(14)–(17). By the MF approach the aggregate function should satisfy

(21)

On the other hand, by (14) and (16), we have

This together with (21) leads to the fixed-point equation

(22)

Thus, we obtain the set of distributed strategies

(23)

(24)

where ; is given by (22) and can be
taken as an arbitrary value.

B. Analysis of the Closed-Loop System

Applying (23) and (24) into the dynamic (1)–(2), we get the closed-
loop system

(25)

(26)

where is given by (22).
Noting the MF aggregate function is only determined by (22),

may not be existent or unique. For the former case, the MF approach
does not work for our problem; for the later case, further investigation
needs to be done. In the remainder of this paper, we only consider the
case where the MF aggregate function is existent and unique. Specifi-
cally, we assume:

A4): , where

.
Generally speaking, A4) is hard to verify directly. We now provide

an easier-to-be-verified condition that ensures A4).
Proposition 4.1: If for any , and there exists a

sufficiently large , such that for all ,

then Assumption A4) is guaranteed. Particularly, if
, then A4) holds.

Proof: If , then from [27], is existent,
and . By a straightforward calculation with
properties of matrix norms, we have
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This with , gives

We first provide a result of the approximation error.
Theorem 4.1: For the system (1)–(4), if A1)-A4) hold, then under

(23)–(24), there exists a constant such that

(27)

Proof: Let . By (26), we have

(28)

where . From A1), it follows that

From (28)

Thus

We now give uniform stability of the closed-loop system.
Theorem 4.2: For (1)–(4), if A1)-A4) hold, then under (23)–(24),

the closed-loop system has the following property:

(29)

Proof: By (22) and Assumptions A3)-A4), we have

(30)

where . This together with (25), A1), A3) and
Theorem 4.1 implies that

(31)

From (26), (30), A1), A3), and Theorem 4.1, it follows that:

(32)

which together with (31) gives the theorem.
Below we extend the Stackelberg strategy concept in [19] from the

optimal response to the -optimal response for followers and give the
definition of the -Stackelberg equilibrium.
Definition 4.1: Let . For the system (1)–(4), a set of strategies

is an -optimal response of minor agents to
the strategy , if for any

where is an optimal response of the minor agents to
. A set of strategies is an -Stack-

elberg equilibrium, if is an -optimal response of the
minor agents to , and

where is a Stackelberg equilibrium.
We are now in a position to show the asymptotic optimality of the

distributed strategies.
Theorem 4.3: For the system (1)–(4), if A1)-A4) hold, then under

(23)–(24), the corresponding index values satisfy

(33)

(34)

Furthermore, constitutes an -Stackelberg equilibrium,
where .
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Proof: By Assumption A1), (3), (25) and (27), we have

(35)

From A1), (4), (22) and (25)–(27), it follows that

This together with (7), (13), and Theorem 3.1 gives

(36)

where is the optimal response of the minor agents to
. From (12), (35) and A3), one can get

which together with (36) implies is an -Stackelberg
equilibrium with .

V. NUMERICAL EXAMPLE

We now use a numerical example to illustrate the asymptotical opti-
mality of distributed strategies.

Fig. 1. Trajectories of and with respect to .

The dynamic equations of agents are given by

where is a white noise sequence with the normal
distribution . Let , be indepen-
dent and identically distributed random variables with . Pa-
rameters in index functions are taken as

, . It can be verified that A1)-A4) hold. From
(23) and (24)

(37)

(38)

where .
We now check the costs of all the agents under (37) and (38). Let

. Then, by Theorems 3.2 and 4.3, we get that for
the case of large population and are approximately
and , respectively, which are
the index values under the centralized Stackelberg equilibrium. When
the number of agents grows from 1 to 200, the trajectories of and

are shown in Fig. 1, from which one can see that the costs tend to
the upper bounds 1 and 0.73.

VI. CONCLUDING REMARKS

This note studies Stackelberg games for MASs involving a leader
and many followers with infinite horizon tracking-type costs. We first
provide a set of centralized strategies for this case, and then give a
set of distributed strategies by the MF approach and the BF method.
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It is shown that the set of distributed strategies is an -Stackelberg
equilibrium.
For Stackelberg games based on the MF approach, there are a lot of

interesting problemsworthy of investigating. TheMF approachmay be
used to tackle the case where the costs are general functions of
and . Furthermore, wewould ask how robust the results onMF games
are, or whether MF approaches can tackle the model with non-white
noises (e.g., general bounded noises).
In this note, we assume minor agents can get the information of the

major agent freely. However, in some case the cost of communication
cannot be neglected, which needs to be considered further. This tech-
nical note considers MASs with time-varying dynamics and costs. If
the model specializes to a time-invariant one, some connections with
ergodic control and stationary distribution may be an interesting issue.
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